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Abstract. We introduce an algorithm (Watta), which automatically calculates supraglacial lake bathymmetry and potential 

ice layers along tracks of the ICESat-2 laser altimeter. Watta uses photon heights estimated by the ICESat-2 ATL03 product 

and extracts supraglacial lake surface, bottom, corrected depth and (sub)surface ice cover in addition to producing surface 

heights at the native resolution of the ATL03 photon cloud. These measurements are used to constrain empirical estimates of 15 

lake depth from satellite imagery, which were thus far dependent on sparse sets of in-situ measurements for calibration. 

Imagery sources include Landsat OLI, Sentinel-2 and high-resolution Planet Labs PlanetScope and SkySat data, used here 

for the first time to calculate supraglacial lake depths. The Watta algorithm was developed and tested using a set of 46 lakes 

near Sermeq Kujalleq (Jakobshavn) glacier in Western Greenland, and we use multiple imagery sources to assess the use of 

the red vs green band to extrapolate depths along a profile to full lake volumes. We use Watta-derived estimates in 20 

conjunction with high-resolution imagery from both satellite-based sources (tasked over the season) and nearly-simultaneous 

Operation IceBridge CAMBOT imagery (on a single airborne flight) for a focused study of the drainage of a single lake over 

the 2019 melt season.   Our results suggest that the use of multiple imagery sources (both publicly-available and commercial) 

in combination with altimetry-based depths, can move towards capturing the evolution of supraglacial hydrology at 

improved spatial and temporal scales. 25 

1 Introduction 

Ice loss from Greenland and Antarctica is the greatest current contributor to rising sea levels, and paleodata and modelling 

efforts indicate that enhanced mass loss of these ice sheets may become irreversible if certain major tipping points are passed 

(IPCC 2019, Special Report on the Ocean and Cryosphere in a Changing Climate). Recent observations have shown that ice 

loss is accelerating faster than projected (Slater, 2018), with a sixfold increase since the 1970/80. In Antarctica, this was 30 
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largely driven by increased ocean melting of outlet glaciers (Rignot, 2019), while on the Greenland Ice Sheet mass loss is 

further promoted by increased surface melt and runoff (Mouginot, 2019).  

Owing to the non-linear relationship between increasing summer air temperatures and surface melt  (Trusel, 2018), 

meltwater production has increased rapidly on the Greenland Ice Sheet (van den Broeke, 2016).  In the summer of 2019, 

advection of warm, wet mid-latitude air led to a summer mass loss unprecedented in the past 50 years, with widespread 35 

surface melt occurring up to the highest regions of the ice sheet (Tedesco and Fettweis, 2020; Sasgen, 2020). Concurrent 

with the increase in melt extent and duration, supraglacial lakes - which form when meltwater runoff collects in local 

topographic lows - are now a common feature on large parts of the ice sheets and have become more extensive and have 

advanced inland toward higher elevations in the past decades (Gledhill and Williamson, 2018; Leeson, 2015; Howat, 2013) 

These meltwater lakes and streams are a key component of the hydrological system of both ice sheets. Meltwater 40 

pathways can include surface flow into lakes and then streams, leading to direct loss to the bed from lake drainage or the 

sudden termination of a stream into a moulin, or near-surface flow where ice slabs can limit vertical motion (MacFerrin, 

2019). The links between supraglacial hydrological systems and englacial or subglacial pathways are a complex system 

which can potentially be deduced by capitalizing on increasingly higher-resolution imagery and classification techniques of 

feature types (Yang 2017). Past remote-sensing work has derived lake volumes from high-resolution (~1m) Worldview 45 

imagery using a physical optical depth approach as well as an empirical method using in-situ estimates (Moussavi, 2016; 

Pope, 2016). Both the physically-based and empirically-based methods are limited to supraglacial lakes which contain 

minimal particulate matter (Arthur et al., 2020), and by the depth of the lake, assuming that the reflection depletion in 

imagery is limited at great depths, implying a physical limit to the ability to calculate depth  (Box and Ski, 2007).  Additional 

work has applied a similar physically-based approach using Sentinel-2 from Copernicus (Williamson, 2018) as well as a 50 

combination of LandSat and Sentinel-2 imagery (Moussavi, 2020).  Although Sentinel-2 provides relatively high resolution 

(10 m) imagery with substantial coverage at a 4-day to weekly interval, usable imagery is often limited by cloud-cover, and 

the resolution of small streams and ice cover is imperfect. Commercial satellite imagery, which is poised to expand 

substantially in the future, can help fill the gap in coverage of small-scale melt and melt-induced features at a higher spatial 

and temporal resolution, complementing estimates resolved from Sentinel-2. 55 

  The recent availability of the ICESat-2 laser altimeter since 2018 has now introduced the potential to replace the 

in-situ measurements used in empirical bathymetric methods with satellite laser bathymmetric depths at a high vertical 

resolution, consequently extracting lake volumes from imagery (Parrish, 2019). Here, we present a new algorithm, titled 

“Watta”, using the ICESat-2 laser altimeter to derive properties of supraglacial lakes. Watta was first presented in Fricker et 

al. (2020), demonstrating both the potential for ICESat-2-based baythmmetry estimates and the greater accuracy of 60 

empirically-based lake depths in comparison to physically-based estimates; the latter tended to underestimate lake depth. In 

addition to bathymetry (supraglacial lake depth) derived from the difference between the air-water and water-ice interface, 

this algorithm assigns a probability for surface type characteristics to photon returns along-track. These types include lakes, 

refrozen lakes, lakes with ice layers on top as well as under the surface. Watta also returns surface heights at the native 
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resolution of the ATL03 photon cloud, allowing the algorithm to capture small-scale changes in surface relief wen multiple 65 

passes are differenced. Additionally, we exploit a range of imagery data to validate the surface types and to derive spectrally-

driven depth estimates calibrated to ICESat-2-based depths, thereby providing an estimate for meltwater volume over the full 

image. We compare empirically-based volume estimates derived from a single ICESat-2 based depth estimate but multiple 

imagery sources with different spatial resolutions (and without an atmospheric correction) to better understand the 

importance of spatial resolution and radiometric calibration on the relative accuracy of depth volume estimates.  70 

 

The method is tested and refined using representative sections along the flowline of Sermeq Kujalleq (Jakobshavn Isbræ), 

one of the fastest-moving glaciers in Greenland, as well as the slower-flowing Sarqardliup Sermia. The repeat-tasking of 

Planet SkySat imagery was designed to coincide with ICESat-2 tracks (Fig. 1), capturing lake depths at various stages of 

lake development during an unusually intense melt season. One of the major motivations for this tasking effort was its 75 

coincidence with several NASA Operation IceBridge (OIB) flights at the beginning and end of the summer. Data from 

multiple instruments aboard OIB could potentially provide additional insight in future work, and within this study, we use 

OIB CAMBOT imagery as a part of a focused multi-instrument study of the evolution of a supraglacial lake. The availability 

of simultaneous laser altimetry and high-resolution imagery over the season provided a rich test dataset with which to extract 

altimetry-based estimates of supraglacial lakes at various points in the season. Here, we present initial results exploiting this 80 

dataset as well as introducing the Watta ICESat-2 surface feature detection algorithm. 
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Figure 1: Study region over Sermeq Kujalleq and Sarqardliup Sermia. Top Left: Lake Ayşe on May 23rd using Planet SkySat 85 
visual imagery, Bottom left, study region over Western Greenland. Right: Main region with repeat-tasking locations for Planet 
SkySat shown in white boxes over annual velocity estimates from MEaSUREs (NSIDC). Center track,ICESat-2 repeat ground 
tracks shown in white. Operation IceBridge flight on May 15th, 2019 shown in green. Five lakes indicated in red discussed 
throughout text include C: Lake Cecily, A: Lake Ayşe, J: Lake Julian, N: Lake Niels, Z: Lake Zadie 

2 Data Sources 90 

2.1 Satellite Altimetry 

Our Watta method relies on individual photon heights as measured by ICESat-2’s ATLAS instrument distributed in the 

ICESat-2 ATL03 product, L2A, Global Geolocated Photon Data (Neumann et al., 2019). The polar orbiting ICESat-2 

satellite was launched in September, 2018 to continue the mission begun by ICESat (2003-2009) and bridged with the 

airborne Operation IceBridge mission, namely to provide ice sheet mass balance estimates at an unprecedented level of 95 
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accuracy.  The Advanced Topographic Laser Altimeter (ATLAS) system is a photon-counting 532 nm laser altimeter aboard 

ICESat-2 split into 6 beams which are divided into 3 pairs (separated by 3.3 km), where beams within each pair are separated 

by 90m. Each beam pair consists of a strong and weak beam, with the strong beam using 0.6-3.9 signal photons per shot vs 

0.6-1.0 signal photons per shot for the weak beam. While the strong beam produces a stronger signal, we have developed the 

Watta algorithm to work effectively with both strong and weak beams.  ATL03 produces a photon cloud where each photon 100 

is geolocated to within a 6.5m accuracy  (MacGruder et al., 2020) with an associated height as well as a confidence level, 

and is produced at an along-track horizontal resolution of 0.7m.  While the ATL06 product (Smith et al., 2019) provides 

highly-accurate surface height estimates at a coarser resolution, the higher spatial resolution of the ATL03 product can be 

used to deduce fine-scale surface characteristics, as with the Watta algorithm. Over water bodies, ICESat-2 can produce 

returns both over the surface over the lake as well as the bottom of the lake (Fair et al., 2020; Fricker et al., 2020; Parrish et 105 

al., 2019) ; these dual returns are used by Watta to extract supraglacial lake depths, as well as lake surface characteristics.  
 

2.2  High-resolution imagery near Sermeq Kujalleq 
For imagery sources, in addition to freely-available Landsat OLI (30m) and Sentinel-2 (10m) imagery, we incorporate very 

high resolution imagery from Planet Labs, including Dove-R (3m) and SkySat (~1m).  The latter is used to validate surface 110 

types, while all imagery sources are used to derive spectrally-driven depth estimates calibrated to ICESat-2-based depths. 

Additionally, the high-spatial resolution of SkySat imagery allows for the identification of small-scale features on the surface 

and bottom of supraglacial lakes, which we use to interpret the temporal evolution of lake characteristics in a number of case 

studies. SkySat imagery did not include an atmospheric correction, and we therefore used TOA Reflectance values from 

Landsat, Sentinel-2 and SkySat imagery to calculate supraglacial lake depth for the sake of consistency. PlanetScope Dove-R 115 

data provided surface reflectance values only and is known to have issues with radiometry. However, because the method 

used here derives lake depth values empirically (rather than physically), this work presents the opportunity to develop 

accurate depth estimates using high-resolution data where calibration is imperfect, but where the data availability is high. 

This is particularly true for data from the PlanetScope constellation, which is frequently captured multiple times within a 

single day. Relative response curves for the bands used in this study are red, blue and green and NIR as shown in Fig. 120 

S1b.  Finally, all imagery was coregistered with ICESat-2 using the GIMP-2 digital elevation model (DEM), which is used 

for the geolocation of Landsat imagery. 

As a part of this project, SkySat imagery was tasked for repeat cycles of ~4 days over the 2019 Greenland melt 

season in selected locations, producing usable imagery at varying intervals based on cloud cover. Each of the 3 areas of 

interest presented here were approximately 600km2 on average. Repeat imagery was specifically chosen to cover flowlines 125 

of fast-flowing glaciers, including Sermeq Kujalleq, as in this study (Fig. 1). In addition, repeat tracks were designed to 

coincide with both (a) overpasses of the recently-launched NASA ICESat-2 laser altimeter and, (b) several flights of the 

airborne NASA Operation IceBridge (OIB) mission in the beginning and end of the season. Here, we present the first work 

exploiting this stacked dataset for method development, restricted to available satellite imagery/altimetry. We note that for 
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Lake Julian, discussed in section 5, OIB conducted a flight on 2019/5/15, thus capturing observations from multiple 130 

instruments onboard OIB, including CAMBOT imagery and the Airborne Topographic Mapper (ATM). While ATM-based 

lake depth estimates could potentially be compared to the lake depths calculated from the near-simultaneous ICESat-2 

overpass, this is outside the scope of this study, We discuss Lake Julian in detail in order to facilitate potential future 

research at this site. 

The final set of lakes used for the development of the Watta method included 50 lakes captured by ICESat-2 135 

(46  over Sermeq Kujalleq and Sarqardliup Sermia, and 4 additional lakes in the southwest, not shown here), 14 of which 

coincided with very high-resolution imagery (SkySat) within a 3-day window. The date/times for all data sources is 

presented in Supplemental Table [1]. 

3 Methods 

We derive supraglacial lake volume from a given imagery source in four steps. We first calculate lake depths along an 140 

ICESat-2 beam using the Watta algorithm applied to the ICESat-2 ATL03 photon cloud. Secondly, we coregister Watta-

based surface and lake bottom heights with the imagery source (itself co-registered to a common Landsat base) and delineate 

lake boundaries in the process. Finally, we develop an empirical relationship between ICESat-2 based depths and coincident 

imagery which can be applied to calculate lake depths over the full image. The empirical relationship is based on the 

exponential decay of reflectance at water depth, as detailed by Box and Ski (2007). In the original work, in situ depth 145 

estimates and reflectance values from imagery (R) were used to estimate the ɑ-coefficients in eq. 1, which were then applied 

to calculate water depth over the full-scale of imagery where lakes are delineated: 

D = ɑ0 / (R + ɑ1) + ɑ2        (eq. 1) 

However, such in situ estimates are scarce in space and time, and here we exploit the direct depths from the Watta algorithm 

to derive time, location and sensor specific estimates of the ɑ-coefficients. 150 

 

3.1 Watta 

Watta is an algorithm which takes ICESat-2 ATL03 photon data as input and automatically detects supraglacial surface 

features with an associated probability of likelihood. In its current state, the algorithm detects lakes and their associated 

surface, lake bottom and corrected depth estimate as well as subsurface ice when present (Fig. 2). We also exploit the 155 

algorithm for the detection of frozen streams in this study. The codebase for Watta is divided into a module which calculates 

surface and bottom returns (“Surface Detection”) at the native 0.7 m resolution of ICESat-2, and a second “Interpretive” 

module that resolves the calculated bottom/surface to specific supraglacial features, in this case lakes. The Surface Detection 

module determines, for a collection of 75 photons surrounding any individual photon (selected in step a), heights with the 

three strongest peak probabilities within in a kernel density (step b). This provides estimates for (1) a height for the surface 160 

or top of a lake or refrozen pond (2) a  lake bottom and (3) a third height value, which can potentially be subsurface ice (Fig. 
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2 step a). We note that photons are selected without regard to ATL03 confidence level. Although the bin width (and 

therefore vertical resolution) used to calculate heights is 0.1m, we perform a second kernel density estimate calculation using 

a 0.3m bin width to confirm robustness of the initial bottom estimate, i.e. that a coarser calculation produces a bottom height 

near that of the finer-resolution (0.1m bin width) calculation. In post-processing step c,  outliers are identified in comparison 165 

to surface/bottom heights within a larger horizontal window.  Where outliers are found, the kernel density estimate (steps 

a,b) are recalculated with a larger number of photons (in multiples of 75) to account for any erroneous calculations generated 

by insufficient photon density. Where values continue to be outliers, they are removed from the estimates to be interpolated 

instead. The final output of the Surface Detection module include a calculated surface and potential lake bottom return at the 

native resolution of the ATL03 photon cloud. 170 

Figure 2. Diagram of the Watta methods described in main text. 

 
The Interpretive module uses output from the Surface Detection module to automatically determine locations of surface 

features (e.g. lakes or frozen streams) as well as characteristics of a lake, e.g. the presence of refrozen ice at the surface. 175 

First, remaining outliers are removed outliers by calculating a local background and surface photon density for each ATL03 
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photon, as determined from a 5000 photon-count window surrounding the estimate location (step d). We then remove those 

estimated heights for top (surface) and bottom (potential lake bottom) where the photon density more closely resembles the 

background photon density than a surface density estimate. In step e, we detect breaks in the slope of the top (surface) to 

divide the satellite pass into segments which are potential lakes. For example, a semiparabolic depression in topography, 180 

with a high absolute value of the slope, is broken by a lake surface, where the slope approaches zero (e.g. as in Fig. 2 step a. 

For each of these potential lakes, we then perform several steps to both refine lake surface/bottom and to assign the lake a 

class based on its properties. To produce a lake bottom value with greater accuracy, we first perform a recalculation of the 

kernel density estimate (step f, equivalent to the Surface Detection step b), except here we limit the kernel density estimate to 

photons below the calculated surface and use 30 photons rather than 75 photons, to better capture the lake bathymetry, which 185 

in general is more irregular than the lake surface. Sub-surface ice layers near the edges of the lake are then reclassified as 

lake surfaces, thus sealing the bottom of the lake to the top at the lake edges (step g). In step h, we first perform a final 

smoothing, passing the resulting bottom photons through an iterative robust quadratic local regression (rloess) filter to 

remove outliers in the bottom estimates and then assign physical meaning to each photon (e.g. lake surface, bottom, surface 

ice, subsurface ice). The presence of surface ice is determined based on the variability in thickness of the lake surface (i.e. a 190 

bimodal distribution indicates surface ice at some locations). We identify subsurface ice by the presence of weak return 

above the lake bottom but below the surface (see Fig. 2 step b). The surface and bottom photons are then used to derive lake 

depth, where we apply a simple correction for refraction, described in Parrish et al. (2019), to produce a real corrected lake 

depth. Finally, in step i, we assign a final classification of a lake type  using properties of the local surface slope and the 

strength of the bottom return (Table 1). For example, a segment with a surface slope smaller than 0.03% as well as a distinct 195 

bottom (a photon density far exceeding the density of a background return) is given a lake classification of ‘highly likely’, 

whereas segments passing the same slope threshold but not showing a strong bottom return are identified as ‘likely ice-

covered’ lakes. On the other hand, segments with a slope exceeding 0.3% and no significant peak below the surface in the 

histogram are allocated to the ‘highly unlikely’ lake class. 

Class Slope Bottom 
reflection* 

Lake probability Lake characteristics 

1 < 0.03% strong highly likely very flat open lake, dense bottom photon returns 
2 0.3% < slope < 0.3% strong very likely flat, open lake with presence of refrozen ice; dense 

bottom photon returns 
3 > 0.3% strong likely non-flat surface, possibly flowing water channel 

on sloping surface; dense bottom photon returns 
4 < 0.03% weak very likely very flat open lake; weak bottom photon returns 
5 0.3% < slope < 0.3% weak about as likely as not flat open lake; weak bottom photon returns 
6 > 0.3% weak unlikely Non-flat surface; weak bottom photon returns 
7 < 0.03% none likely Very flat refrozen lake; no significant bottom 

photon returns 
*: strength of the bottom reflection is defined by the ratio of the first two peaks in the 2m interval histogram of non-surface 
photon heights within the segment. Strong bottom reflection: peak ratio > 3.5; weak bottom reflection: 2.5 < peak ratio < 3.5; 
no bottom reflection: peak ratio < 0 
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Table 1. Definitions for Watta lake classes 200 

 
3.2 Imagery Processing 

A subsequent set of steps uses the lake depths extracted from the Watta algorithm to produce lake volumes from concurrent 

imagery, e.g. SkySat, PlanetScope, Sentinel-2 and Landsat OLI, requiring  geolocation as well as the semi-automated 

identification of lake edges Coregistration between ICESat-2 photon locations and imagery (Fig. 3 Step j) is managed by 205 

registering ICESat-2 elevations with the GIMP-2 DEM as an intermediary step (GIMP-2 is also used for georeferencing of 

Landsat), by transforming the point cloud using the iterative closest point algorithm, which minimizes the square error 

between the two data sets. (Besl and McKay, 1992) The point cloud from ICESat-2 is chosen to include a 0.2 degree window 

surrounding the lake being resolved to include larger topography in the region (and thus avoid errors presented by ice 

motion). The large lakes used here are all located in strong topographic depressions (which are resolved in both the GIMP-2 210 

DEM and ICESat-2) and can therefore be assumed to remain relatively fixed.  

To register imagery sources to one another, we standardize all imagery to the nearest Landsat image, using the 

arosics library in Python (Scheffler et al., 2017), which detects and corrects misregistrations of an input image (based on a 

reference image) at the sub-pixel scale. However, the coregistration of all other imagery sources to Landsat OLI first requires 

the delineation of lake boundaries in order to exclude regions with moving surface water which evolves rapidly and can be 215 

mistaken for fixed topography (which is more useful for geolocation). Here we calculated a normalized difference water 

index (NDWI) for each image, using a standard NDWI (with the green and NIR) bands to deliberately include regions with 

ice layers (as these are also detected by Watta), rather than the modified NDWIice,, per Yang and Smith, (2013) Boundaries 

of lakes (step l in Fig. 3) are calculated by using adaptive thresholding (Bradley et al., 2007) to generate a binary mask which 

is then used to identify individual water bodies. The use of adaptive thresholding avoids the limits of any fixed NDWI 220 

threshold, especially relevant to PlanetScope data, which occasionally produces negative NDWI values. However, we note 

that this step has the potential to include partial ice layers (although visual inspection suggests that this was avoided with the 

test cases used here). To coregister ICESat-2 to each imagery source, we also note that the ICESat-2 mission requirements 

list a geolocation accuracy of 6.5m (Macgruder, 2020), which may potentially include multiple pixels of high-resolution 

imagery. To calculate a band value from imagery associated with a geolocated photon from ICESat-2, we find pixels in 225 

imagery which overlap a line 6m in each direction perpendicular to the ICESat-2 beam and calculate a mean. In Step k, we 

calculate an empirical relationship between the depth estimate calculated by Watta and a band value from coregistered 

imagery pixels. Finally, we use this empirical relationship to produce a depth estimate for the entire lake using eq. 1. 
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 230 

Figure 3. Diagram of imagery processing steps accepting Watta outputs as input (top left) and producing lake depth estimates 
(bottom left). Watta lake depth profile shown is for Lake Ayşe using RGT 841 on May 23rd and Planet SkySat imagery on May 
22nd. 

4 Evaluating Methodology 

4.1 Physical constraints of the test dataset 235 

The test dataset provides a diversity of lake types, with the largest surface area calculated at 5.6 km2 and a maximum Watta-

calculated corrected depth at 10.3 m.  A number of lakes contain substantial ice cover. In the following sections, we discuss 

https://doi.org/10.5194/tc-2021-4
Preprint. Discussion started: 29 January 2021
c© Author(s) 2021. CC BY 4.0 License.



11 
 

several lakes in greater detail which present a diverse set of conditions with which to evaluate both the Watta algorithm and 

the imagery sources used to extrapolate lake volumes. Locations of the lakes can be found in Fig. 1. 

Lake Ayşe was selected for closer examination because despite the dense photon cloud, its relief in surface and 240 

bottom, combined with the presence of ice cover, pose a challenge for our detection algorithm. Additionally, multiple 

imagery sources were available within a 5-day window at this location. Lake Zadie is chosen because it represents an ideal 

case for the algorithm, while Lake Cecily is chosen because two beams passed over the same lake with SkySat imagery 

available one day afterwards. A basic assumption we make in this study is that the lake bottom remains relatively consistent 

over several days, although past research on 2 lakes in Western Greenland has estimated lake bottom ablation rates at 6.5 245 

cm/day on the bottom of the pond (Tedesco et al., 2012). We assume that this is the primary physical source of uncertainty in 

the empirical calculation, as the relationship will degrade with temporal distance from the ICESat-2 pass. However, where 

changes in the bathymetry are not uniform, we can potentially make inferences about drainage mechanisms (e.g. the forming 

and deepening of crevasses).  Cross-sections of all lakes used for development showing the lake top, bottom, and bottom 

value corrected for refraction as calculated by Watta, along with lake top and bottom as calculated empirically from imagery, 250 

are shown in Supplemental Fig. S4, Table S1. 

 

4.2 Evaluating lake depths calculated from Watta using ICESat-2 ATL03 

The most rigorous weighting system used for the algorithm, using only lake classes 1, 2, 4 and 7 (see Table 1), succeeded in 

automatically detecting 49 out of the 50 lakes identified in the available imagery, with two likely false positives (i.e. not 255 

confirmed by NDWI values exceeding 0.2 in the imagery). A less rigorous weighting system, including lake class 3, detected 

the 50th lake, but resulted in a large number of false positives in areas of steep, and rough topography, where abrupt changes 

in the photons elevations are misinterpreted as bottom reflections by the algorithm. 

 In the absence of simultaneous in situ data, we evaluate the performance of the algorithm based on visual 

inspection. Additionally, where an empirical relationship with imagery is successful (a high correlation coefficient value), 260 

we take this consistency for partial evidence that ICESat-2 and imagery sources have detected bathymetry correctly. The 

most successful bottom retrieval occurred where ice cover was minimal, the density of photons was high and where the 

bottom slope was relatively uniform (e.g. Lake Zadie). The presence of ice near the surface (between the surface and 1m 

below the surface) frequently obscured lake bottom detection (e.g. reference ground track (RGT) 1222, Lake 3 in Fig. 

S4),  although in some cases only partially; however, the presence of subsurface ice did not always preclude the presence of 265 

a strong bottom return (e.g. Lake 7, RGT 1169, Fig. S4). The algorithm therefore indicates the presence of surface/near-

surface ice, but does not automate the removal of the calculated bottom return due to ambiguity. We can confirm the 

presence of an ice layer both by visual inspection of the imagery and by comparing standardized NDWI values calculated 

from imagery coincident with the ICESat-2 track (Fig S1a).  We note that for at least one case, (RGT 1108 Lake 6, Fig. S4), 

the designation of “lake” was ambiguous, as this could be treated as either a shallow lake containing a large amount of 270 

subsurface ice, or as a slush layer (a number of which were identified elsewhere).  
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4.3 Evaluating Data Sources for Imagery-based Depths 

Total uncertainty for the empirically-based depth estimates from imagery is comprised of uncertainty in ICESat-2 

geolocation, uncertainty from the Watta algorithm itself (which operates at a vertical resolution of 0.1m), from the resolution 275 

of the imagery, from the uncertainty in alpha coefficients calculated from the empirical method and finally from physical 

changes in the lake occurring between the time that imagery is captured and the ICESat-2 pass. The empirical calculation is 

less likely to be affected by physical changes in the lake when the lake surfaces calculated by imagery vs altimetry differ by 

less than a meter; here we estimate precision with a simple R2 value. 

 Past work has considered either the red or green band for developing depth estimates (Moussavi et al., 2020; 280 

Williamson et al., 2018), though in situ validation was limited at the time (Pope et al., 2016). Figure 4 compares R2 values 

from empirical estimates derived from the red vs green band for lakes classified according to the maximum lake depth 

calculated by Watta. In agreement with Moussavi et al. (2016), for Landsat 8 (Fig. 4d), Sentinel-2 (Fig. 4c) and SkySat (Fig. 

4a), the empirical depth estimates for the red band showed higher fidelity with Watta-based depths for shallow lakes, while 

the green band showed greater fidelity for deeper lakes. Of six lakes where a maximum depth exceeds 7.2m and where the 285 

imagery source is Landsat 8, two lakes (RGT 1222, Lake 8, 12 in Supplemental Profiles) show both red and green-band 

based profiles being unable to resolve the deepest points in the lake. For two additional cases (RGT 1222, Fig. 4e, Lake 

Zadie, Lake 14, 17 in Supplemental Profiles), the green band was able to resolve very deep lake depths, while the red band 

was not. This implies that for SkySat, Sentinel-2 and Landsat 8, the green band is able to resolve bathymetry at greater 

depths and emphasize cracks at the bottom of the lakes. The major exception is PlanetScope data (Fig. 4b), where the red 290 

band consistently showed greater fidelity to Watta-based estimates while green band estimates produced unrealistic depth 

estimates, although there’re were a limited number of lakes where coincident PlanetScope imagery was available . We note 

that because this method is empirical, future users would be able to select bands or combinations, as with the average of the 

panchromatic and red band used by Pope et al. (2016), that provide the greatest fidelity to ICESat-2 based observations.  
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 295 
Figure 4. Comparing R2 values from empirical estimates calculated with the red band vs the green band from multiple imagery 
sources, with lakes classified by maximum lake depths as calculated by Watta. (a) Planet SkySat TOA reflectance (b) Planet 
PlanetScope surface reflectance (c) Sentinel-2 TOA reflectance (d) Landsat 8 OLI TOA reflectance  (e)  Watta-calculated and 
imagery-derived depths: Lake Zadie based on Landsat OLI  
 300 

 To demonstrate the robustness of the Watta algorithm, the impact of band choice, and the sensitivity to absolute 

lake depth, we show depths calculated from two beams passing over Lake Cecily on June 13th, followed by retrieval of 

SkySat imagery on June 14th and Sentinel-2 on June 16th (Fig. 5 a,b and RGT 1169 Lake 5(6) in Supplemental Profiles). 

The green band shows higher R2 values for both Sentinel-2 and SkySat for the 3l beam, but lower R2 values for the red band. 

This is consistent with the greater depths calculated from the 3l beam, which approach the 6m depth at where the 305 

performance of the green band is expected to improve. The use of the green band in both the 3l and 3r cases allows for finer 

bathymetric relief to be captured in both SkySat and Sentinel-based depth estimates, with the finer resolution of SkySat 

capturing substantially greater detail (Fig. 5c, box). We note that even when high R2 values are calculated between the 

empirical estimate and Watta-calculated depths, unrealistic depths can result when lake drain or fill rapidly, and low-

resolution imagery can potentially resolve the height of a lake surface inaccurately (Fig. S2).   310 
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Figure 5. Watta-calculated and imagery-derived depths: Lake Cecily based on Sentinel-2 (l,m) and Planet SkySat (n,o); Lake 
Cecily false-color imagery from Sentinel-2 (a) and SkySat with ICESat-2 beam 3r and 3l (b); Imagery-derived depths from Planet 
SkySat (c-f) and Sentinel-2 (g-j) with band/beam combination as shown. 315 
 

Within Figure 6, we show the depth evolution of Lake Ayşe over 5 days, both along the ICESat-2 ATL03/Watta-

calculated profile and the lake volume estimates then constructed from imagery using the empirical equation. Increasing lake 

volume is demonstrated both by the expansion of the surface area of the lake through time (right column) and the rise in the 

lake level (cyan line, left column). Planet SkySat estimates at a 1m resolution (Fig. 6c) show the greatest level of detail of 320 

crevassing at the bottom of the lake although PlanetScope estimates, at a 3m resolution (Fig. 6d,e are comparable. We note 

https://doi.org/10.5194/tc-2021-4
Preprint. Discussion started: 29 January 2021
c© Author(s) 2021. CC BY 4.0 License.



15 
 

that PlanetScope data showed variations in the fidelity to Watta-based estimates between the green band vs the red band 

depending on the instrument. The bottom relief is maintained at depth with the PlanetScope resolution (3m), and future work 

could generate more reliable depth estimates by calibrating empirically-based depths to Sentinel estimates, which could 

provide very high-resolution depth estimates while also leveraging the high temporal frequency of PlanetScope data 325 

collection. 
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Figure 6. Lake Ayşe, filling over five days between May 20th and May 25th, with ICESat-2 pass on May 23rd. Left column: Profiles 
with Watta-calculated and imagery-derived depths from the green and red bands (with corresponding R2 values inset), legend 
same as Fig.4a.  Right column: Depth values derived from empirical estimate, with imagery source , date collected, band used for 330 
depth estimate shown 
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5 Capturing Lake Drainage over the Melt Season 

Our improved ability to track lake depth and volumes using the combination of ICESat-2 and multi-sensor imagery can 

potentially provide new insights into patterns of lake drainage.  Lake Julian (Fig. 7a) is selected for closer examination 335 

because on May 15th, both the airborne Operation IceBridge mission and ICESat-2 passed over this region, providing a 

unique stack of both airborne and satellite data. While we show only very high-resolution Operation IceBridge CAMBOT 

imagery here, other instruments aboard OIB could potentially provide valuable insight into the state of both surface 

hydrology and firn characteristics in future work. Additionally, there are cloud-free ICESat-2 RGT 727 passes over this lake 

both on May 15th, 2019 and on August 14th, 2019, providing a profile of the lake both when it was filled as well as after 340 

drainage. A second lake, Lake Niels (Fig. 7a) is examined briefly primarily to provide context.  Although no altimetry 

estimates are available over Lake Niels, imagery sources reveal a very different evolution and drainage pattern despite its 

being located only 3500 meters from Lake Julian, and consequently subject to many of the same atmospheric drivers. Within 

the larger region shown in Fig. 7a, (Supplemental Fig. S5), the percentage of the ice sheet surface covered in liquid water, as 

measured by the percentage of the region where NDWIice values exceed 0.2, remains constant at around 3%, with meltwater 345 

being spread more uniformly over the ice sheet early in the season and shifting to larger lakes later in the season. We note 

that this measure of melt extent does not translate directly to consistent meltwater volume; meltwater underneath the 

snowcover on Lake Niels was not estimated earlier in the season, while the deeper lakes which are present later in the season 

will contain larger water volumes. 

 Although elevation decreases overall toward the northwest, both lakes coincide with large-scale surface depressions 350 

calculated from the GIMP-2 DEM (Fig. 7) and this region experiences comparatively low ice velocities. Lake Niels is 

located in a deep surface depression whereas the corresponding surface depression for Lake Julian is relatively shallow.  

Because both imagery and ICESat-2 are coregistered to the GIMP-2 DEM, we presume that all inaccuracies will be 

consistent (i.e. even if geolocation is incorrect in absolute terms, imagery and ICESat-2 should overlap). 

 355 
Figure 7. (a) Lake Niels and Lake Julian, shown on May 14th, 2019 using Sentinel-2 imagery as described in the Data section. (b) 
GIMP-2 DEMP shown at same location with contours shown at 10m intervals.  
 

https://doi.org/10.5194/tc-2021-4
Preprint. Discussion started: 29 January 2021
c© Author(s) 2021. CC BY 4.0 License.



18 
 

5.1 Drainage Mechanisms over Lake Julian from airborne and satellite-based imagery 

The volume of Lake Julian begins to increase substantially on May 9th and reaches a maximum volume between May 25th 360 

and May 29th. After June 1st, the lake begins to lose volume until only remnants are present on June 10th, which disappear 

almost entirely by June 19th.  The surrounding region (i.e. a kilometer to the north and west) contain smaller bodies of water 

connected by streams. We note that while larger streams can be captured by Sentinel-2 imagery (Fig. 8j), many of the 

smaller streams present later in the season can only be reliably detected with imagery below a 1-meter resolution (e.g. Fig. 

8r, Supplemental Fig. S5).  The progression shown in Fig.8 captures the development of an efficient drainage system over 365 

the season. 

 
Figure 8. Imagery over Lake Julian shown from April 20th, 2019 through Sep 24, 2019. All images use Planet SkySat Visual data 
unless otherwise indicated by letter on bottom left, with S indicating Sentinel and L indicating Landsat 
 370 
Three potential drainage mechanisms can be observed over lake Julian. Firstly, we note a small stream ending in a spray of 

snow (alternatively, an ice bridge) which is potentially indicative of a moulin (Fig. 9b). However, an overflight of Operation 

IceBridge on May 15th (Fig. 9a) does not definitively show a moulin at the end of the incision, allowing for the possibility 

that the actual drainage occurred under the overlapping ice bridge. We also identify the point labelled B in Fig. 9a,b (also in 
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Fig. 10d,e) as another potential drainage point. Presuming that drainage occurs at either location, lake volume could still 375 

increase slowly (as it does between May 9th and May 25th) if the inflow rate exceeds the outflow rate of the lake. This 

dynamic is captured in a previous in situ study of lake drainage, which indicated that drainage through a moulin decelerated 

as the hydraulic head between the lake and the moulin declined (Tedesco et al., 2013).  

 However, following late May, SkySat imagery captures the development of a second stream directly south of the 

initial potential moulin (Fig. 9b). This small stream, which flows downstream (Fig. 7b) deepens throughout the season (Fig. 380 

9c) with a very deep incision shown distinctly in imagery shown on September 24th (Fig. 8t). The development suggests that 

the relatively slow initial drainage from the potential moulin or Point B accelerated due to increased drainage from a second 

small stream, draining Lake Julian almost entirely between June 1st and June 10th. We note that smaller bodies of water are 

still apparent on the surface after the drainage of Lake Julian, some connected by very small stream networks, which appear 

to be frozen-over by September 24th (Fig. 8t). 385 

 

 
Figure 9. Mechanisms of lake drainage over Lake Julian. (a) CAMBOT imagery from Operation IceBridge flight on May 15th, 
2019 (30cm resolution). (b) SkySat imagery (~1m resolution) on June 10th after large-scale drainage 
 390 

5.2 Drainage Mechanisms over Lake Julian Captured using Watta 

Lake Julian reached a volume of 268120 m3 on May 14th, which was calculated using the green band from Sentinel-2 

imagery on May 14th in conjunction with a Watta-based depth calculation from an ICESat-2 pass on May 15th (Fig 10a,b). 

The time lag introduces uncertainty due to possible lake ablation. We assume that this uncertainty is not due to the 

discrepancy in dates (imagery having been captured on May 14th  whereas a deeper lake depth was captured by ICESat-2 on 395 

May15th). This is because the methodology accounts for changing lake depths, presuming minimal lake ablation, matching 
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Watta-calculated depth to the surface height where the edge of the lake is indicated by imagery (see Methods).   The depth 

values calculated for May 14th indicate a relatively shallow lake (less than a maximum 4 meter depth).  

 A comparison between the two passes of ICESat-2 RGT 727 (the second on August 14th) indicate uneven lowering 

in this region and potential slight ice motion, e.g. a slight southward shift in the lowest point of the depth profile (pt B) 400 

calculated on May 15th vs on August 14th (Fig. 10b). We estimate large-scale surface lowering around ~1m, based on the 

lowering calculated at higher elevations (Fig. 10c,d, where the x axis, showing the distance from an arbitrary start point, is 

greater than 800m). By contrast, elevation changes where surface hydrology features exist show enhanced incision of a pre-

existent stream/drainage point as well as the development of a new stream (Fig. 10 c,d, x-axis value between 0 and 200m ). 

The deepening of the lowest point in the lake could be the product of ice motion, but we assume that the elevation change of 405 

2-3 meters at this location is the effect of lake ablation. This is due to the locations of ice layers being well-matched between 

imagery and Watta-calculated features (discussed shortly), suggesting that any ice motion was adjusted for in the geolocation 

step. 

In addition to locations where Watta calculates a lake surface (Fig. 10d and Fig. 10e, label “B”), Watta also 

identifies regions where ice cover is probable. These are shown in cyan in Fig. 9d at locations A, C, D and in imagery in Fig. 410 

10e. Whereas lake surfaces are calculated at the horizontal resolution of the ICESat-2 ATL03 photon cloud, the ice surface 

class is assigned at a coarser resolution. This is because the Interpretive module assigns the “ice surface” class based on the 

presence of a flat surface under an overlying layer with more varied topography. While currently, the algorithm potentially 

overestimates the extent of these regions, a first automatic pass can be used to identify larger regions where ice surfaces 

exist, after which manual inspection can then identify specific ice layers. Shown in Fig. 10d are the lake (B) as well as three 415 

additional points where we identify ice layers using both Watta and manual inspection (A, C, D). Point B is also captured in 

Operation Ice Bridge CAMBOT imagery on May 15th (Fig. 9a). This is potentially a drainage point which retains meltwater 

as late as August 14th. This location is also covered by a floating ice layer on May 14th, suggesting that an ice layer had 

formed at the same place following drainage in the previous season. Point C corresponds to a deeply incised stream (which is 

not captured in the Watta profile calculated on May 15th) while Point D corresponds to a smaller stream; both of these points 420 

were covered by Lake Julian during the last half of May. We note that the designation of Point A is more ambiguous as it is 

collocated with to an incision which was previously a stream, but is weakly-resolved in both Watta-based estimates and in 

the SkySat imagery collected on August 20th. 
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Figure 10. ICESat-2 RGT 727 over Lake Julian. (a) Sentinel-2 based imagery with ICESat-2 RGT 727 (occurring on May 15th, 425 
2019 and August 14th, 2019) overlapping in green. Operation IceBridge overpass on May 15th, 2019  is directly coincident with the 
ICESat-2 line (b) Watta (from c) and imagery (as in a) based depth (c) Watta calculated from ICESat-2 on May 15th and Aug 14th. 
(d) Watta-calculated surface features over photon cloud on Aug 14th . Points A-D discussed in text (e) Points A-D shown over 
Planet SkySat imagery collected on August 20th with arrow indicating direction of ICESat-2 
 430 

5.3 Lake Niels, Partial Drainage and Refreeze 

In comparison to Lake Julian, Lake Niels begins and ends the melt season as a frozen lake. By May 9th, the ice surface 

begins to melt and the lake surface area expands substantially. However, by May 13th , imagery captures an insulating layer 

of snow, after which the lake expands into June 26th. By July 20th, slow lake drainage is evident via a stream which is 

identified in Fig. 11a and is first observed to contain substantial quantity of liquid water on June 19th (Fig. 11h). We observe 435 

that the stream is clearly incised both on April 20th and on September 24th, when the lake is likely frozen over, based on 

imagery. In comparison to Lake Julian, which was located in a relatively shallow depression, Lake Niels is located in a deep 

depression (Fig. 7) and neither drains early in the season nor connect to an efficient drainage system. Although these lakes 

are subject to similar atmospheric drivers, the differences in drainage patterns highlight how local topography and the 

corresponding depth of lakes can influence how meltwater is either retained on the ice sheet vs drained downstream or into 440 

englacial or subglacial pathways. 
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Figure 11: Lake Niels, shown between April 20th and September 4th, 2019. All imagery is from Planet SkySat Visual imagery 
except on May 9th (where Sentinel-2 imagery is used).   

6 Conclusions 445 

This study represents initial work developing the Watta algorithm for lake depth estimates as well as subsurface ice 

detection, using a unique stacked dataset over Western Greenland during an intense melt season. We demonstrate the 

potential of ICESat-2 for automated lake detection and depth estimation, as well as how empirically-derived depths derived 

from a combination of imagery sources can complement each source’s strengths and weaknesses. For example, while 

Landsat is only available at a low resolution, it provides a rich historical record as well as high geolocational accuracy, 450 

which is leveraged here to better geolocate imagery from Planet Labs. Similarly, while PlanetScope data contains several 

known issues with radiometry and geolocation, imagery is available at a high spatial and temporal resolution. As 

demonstrated in our test cases, a time series constructed from multiple sources can provide valuable information about the 

evolution of ice cover and drainage mechanisms in addition to volume estimates. Given the accelerating sophistication of 

altimetry-based observations, ongoing efforts to improve geolocation, radiometric quality or temporal frequency of high-455 

resolution imagery are crucial. Additionally, the availability of simultaneous imagery and altimetry would enhance the 

capabilities of other satellite imagery sources to fill out the time series by providing a calibration standard. 

 While this initial study focused on lakes in grounded ice in Greenland, Watta can potentially be applied to Antarctic 

melt lakes as well. While mass loss in Antarctica over the next 100 years is generally thought to be dominated by the basal 

melt under ice shelves (Schlegel, 2018), emerging research has focused on the potential importance of surface hydrology 460 

over Antarctica (Arthur, 2020). Supraglacial lakes  have been observed around the margin of the Antarctic Ice Sheet up to 
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high elevations (Stokes, 2019) and are likely to become more prevalent on firn-depleted ice shelves in future warming 

scenarios, which could potentially trigger their collapse and consequently lead to accelerated sea level rise (Lai, 2020). 

         Our algorithm successfully detects a wide variety of lake types automatically, and can be applied to the growing set 

of ICESat-2 and imagery data over large sections of Antarctica and Greenland. Identification of narrow stream features on 465 

sloping surfaces, however, still needs visual verification due to a large number of false positives. This will be addressed in 

future work, together with adding features to the interpretive layer, including slush layers as well as cracks, using the Planet 

SkySat imagery dataset for testing purposes. In addition to these improvements, Watta, which is currently written in matlab, 

will be moved to an open-source language and made available on github. 

 470 
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